Похожие публикации

Самоконтроль по теме «работа с электронными таблицами в программе microsoft excel »
Документ
Функция СЧЕТЕСЛИ(X,Y) в электронных таблицах возвращает количество значений в диапазоне, удовлетворяющих заданному условию. Результат вычислений в яче...полностью>>

Всеукраїнський турнір юних математиків ім. М. Й. Ядренко
Документ
М.Й.Ядренко Ладік А.О., учитель математики МЗШ № Розв’язання завдання № значит, знак дроби зависит от параметра a Если и тогда неравенство(*) будет ве...полностью>>

Урок-сказка. 6 класс. Тема : «Сложение и вычитание чисел в пределе 10000. Нахождение части числа и остатка»
Урок
Цель: закрепить навыки счёта в пределах 1 в столбик, находить части от числа при решении составных задач, через сказочные сюжеты найти путь в сферу эм...полностью>>

«Параболические факторизации редуктивных групп». Специальность: 01. 01. 06 – математическая логика, алгебра и теория чисел. Научный д ф. м н. профессор Вавилов Н. А. Официальные оппоненты: д ф. м н., чл корр. Ран, профессор Панин И. А.; к ф. м н., доцент Степанов А. В. Ведущая организация: федеральное государственное учреждение высшего профессионального образования «Московский государственный университет имени М
Документ
Защита диссертации на соискание ученой степени кандидата физико-математических наук Синчуком Сергеем Сергеевичем на тему: «Параболические факторизации...полностью>>



Урок алгебры в 7 классе. Тема «Медиана как статистическая характеристика»

Урок алгебры в 7 классе.

Тема «Медиана как статистическая характеристика».

Учитель Егорова Н.И.

Цель урока: сформировать у учащихся представление о медиане набора чисел и умение вычислять ее для несложных числовых наборов, закрепление понятия среднего арифметического набора чисел.

Тип урока: объяснение нового материала.

Ход урока

1. Организационный момент.

Сообщить тему урока и сформулировать его цели.

2. Актуализация прежних знаний.

Вопросы учащимся:

Что называется средним арифметическим набора чисел?

Где располагается среднее арифметическое внутри набора чисел?

Что характеризует среднее арифметическое набора чисел?

Где часто применяется среднее арифметическое набора чисел?

Устные задачи:

Найти среднее арифметическое набора чисел:

1, 3, 5, 7, 9;

10, 12, 18, 20

Проверка домашнего задания.

Учебник: №169, №172.

3. Изучение нового материала.

На предыдущем уроке мы познакомились с такой статистической характеристикой как среднее арифметическое набора чисел. Сегодня мы посвятим урок еще одной статистической характеристике – медиане.

Не только среднее арифметическое показывает, где на числовой прямой располагаются числа какого-либо набора и где их центр. Другим показателем является медиана.

Медианой набора чисел называется такое число, которое разделяет набор на две равные по численности части. Вместо “медиана” можно было бы сказать “середина”.

Сначала на примерах разберем, как найти медиану, а затем дадим строгое определение.

Рассмотрим следующий устный пример с применением проектора

В конце учебного года 11 учеников 7-го класса сдали норматив по бегу на 100 метров. Были зафиксированы следующие результаты:

Ученик

Результат в секундах

Данила

15,3

Петя

16,9

Лена

21,8

Катя

18,4

Стас

16,1

Аня

25,1

Оля

19,9

Боря

15,5

Паша

14,7

Наташа

20,2

Миша

15,4

После того как ребята пробежали дистанцию, к преподавателю подошел Петя и спросил, какой у него результат.

“Самый средний результат: 16,9 секунды”, – ответил учитель

“Почему?” – удивился Петя. – Ведь среднее арифметическое всех результатов – примерно 18,3 секунды, а я пробежал на секунду с лишним лучше. И вообще, результат Кати (18,4) гораздо ближе к среднему, чем мой”.

“Твой результат средний, так как пять человек пробежали лучше, чем ты, и пять – хуже. То есть ты как раз посередине”, – сказал учитель.

Далее предложить учащимся самостоятельно рассмотреть по учебнику примеры и сформулировать алгоритм нахождения медианы набора чисел.

Записать алгоритм нахождения медианы набора чисел:

Упорядочить числовой набор (составить ранжированный ряд).

Одновременно зачеркиваем “самое большое” и “самое маленькое” числа данного набора чисел до тех пор, пока не останется одно число или два числа.

Если осталось одно число, то оно и есть медиана.

Если осталось два числа, то медианой будет среднее арифметическое двух оставшихся чисел.

Предложить учащимся самостоятельно сформулировать определение медианы набора чисел, затем прочитать в учебнике определение медианы (стр. 40), далее решить № 186(а,б), № 187(а) учебника (стр.41).

Замечание:

Обратить внимание учащихся на важное обстоятельство: медиана практически не чувствительна к значительным отклонениям отдельных крайних значений наборов чисел. В статистике это свойство называется устойчивостью. Устойчивость статистического показателя – очень важное свойство, оно страхует нас от случайных ошибок и отдельных недостоверных данных.

4. Закрепление изученного материала.

Решение задач.

Обозначим х-среднее арифметическое, Ме-медиана.

№ 1(а).

Набор чисел: 1,3,5,7,9.

х=( 1+3+5+7+9):5=25:5=5,

Ме = 5,

х = Ме.

№1(б)

Набор чисел: 1,3,5,7,14.

х=( 1+3+5+7+14):5=30:5=6.

Ме = 5

х > Ме

№2

а) Набор чисел: 3,4,11,17,21

Ме=11

б) Набор чисел: 17,18,19,25,28

Ме=19

в) Набор чисел:25, 25, 27, 28, 29, 40, 50

Ме = 28

Вывод : медиана набора чисел, состоящего из нечетного числа членов равна числу, стоящему посередине.

№ 3

а) Набор чисел:2, 4, 8, 9.

Ме = (4+8):2=12:2=6

б) Набор чисел:1,3,5,7,8,9.

Ме = (5+7):2=12:2=6

Медиана набора чисел, содержащего четное число членов равна полусумме двух чисел, стоящих посередине.

№ 4.

Ученик получил в течении четверти следующие оценки по алгебре:

5, 4, 2, 5, 5, 4, 4, 5, 5, 5.

Найдите средний балл и медиану этого набора.

Найдем средний балл, то есть среднее арифметическое:

х= ( 5+4+2+5+5+4+4+5+5+5): 10=44:10 = 4,4

Найдем медиану этого набора чисел:

Упорядочим набор чисел: 2,4,4,4,5,5,5,5,5,5

Всего 10 чисел, чтобы найти медиану надо взять два средних числа и найти их полусумму.

Ме = (5+5):2 = 5

Вопрос к учащимся: Если бы вы были учителем, какую бы вы поставили оценку за четверть этому ученику? Ответ обоснуйте.

№ 5.

Президент компании получает зарплату 300000 руб. три его заместителя получают по 150000 руб., сорок служащих – по 50000 руб. и зарплата уборщицы составляет 10000 руб. Найдите среднее арифметическое и медиану зарплат в компании. Какую из этих характеристик выгоднее использовать президенту в рекламных целях?

х = ( 300000+3·150000+40·50000+10000):(1+3+40+1) = 2760000:45=61333,33 (руб.)

Ме = 50000 руб.

В рекламных целях выгоднее использовать среднее арифметическое зарплат, т.к. она выше.

№ 6. Устно.

А) Сколько чисел в наборе, если его медианой служит ее девятый член?

Б) Сколько чисел в наборе, если его медианой служит среднее арифметическое 7-го и 8-го членов?

В) В наборе из семи чисел наибольшее число увеличили на 14. Изменится ли при этом и как среднее арифметическое и медиана ?

Г) Каждое из чисел набора увеличили на 3. Что произойдет со средним арифметическим и медианой?

№ 7.

Конфеты в магазине продают на вес. Чтобы узнать, сколько конфет содержится в одном килограмме, Маша решила найти вес одной конфеты. Она взвесила несколько конфет и получила следующие результаты:

12, 13, 14, 12, 15, 16, 14, 13, 11.

Решение.

х= 13,33

Ме = 13

Для оценки веса одной конфеты пригодны обе характеристики, т.к. они не сильно отличаются друг от друга.

Итак, для характеристики статистической информации используют среднее арифметическое и медиану. Во многих случаях какая-то из характеристик может не иметь никакого содержательного смысла ( например, имея сведения о времени дорожно-транспортных происшествий, вряд ли имеет смысл говорить о среднем арифметическом этих данных).

Домашнее задание :пункт 10, № 186(в,г), № 190.

5. Итоги урока. Рефлексия.